To translate a dataframe column containing lists of words in Python, you can use the Google Cloud Translate API. Here’s an example code :
from google.cloud import translate_v2
import pandas as pd
# create a translation client
translate_client = translate_v2.Client()
# read in your dataframe
df = pd.read_csv(path)
# define the target language for translation (in this case, English)
target_language = 'en'
# define a function to apply to each row of the column, translating the list of words
def translate_list(row):
# join the list of words into a single string
words_string = ' '.join(row[column_to_translate])
# translate the string to the target language
translated_text = translate_client.translate(words_string, target_language=target_language)
# split the translated text back into a list of words
translated_words = translated_text['translatedText'].split()
return translated_words
# define the column containing the lists of words you want to translate
column_to_translate = 'your_column_name'
# apply the translation function to the column
df['translated_column'] = df.apply(translate_list, axis=1)
First, you need to create a service account in your Google Cloud Console. To do this, navigate to the IAM & Admin page and click on « Service accounts ». Then, click on « Create Service Account » and follow the prompts to create a new service account with the appropriate permissions to access the Cloud Vision API.
After you have created the service account, you need to create a key for the account. Click on the service account you just created, then click on « Keys » and « Add Key ». Choose « JSON » as the key type and click « Create ».
This will download a JSON file containing your service account key.
GOOGLE_APPLICATION_CREDENTIALS= "your_path_json_key"
import os
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Set the path to the JSON key file in the GOOGLE_APPLICATION_CREDENTIALS environment variable
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
With these steps completed, your Python code should now be able to authenticate with the Cloud Vision API.